5,809 research outputs found

    Storage and Querying of Large Persistent Arrays

    Get PDF
    The scientic and analytical applications today are increasingly becoming data in- tensive. Many such applications deal with data that is multidimensional in nature. Traditionally, relational database systems have been used by many data intensive application, and relational paradigm has proved to be both natural and ecient. However, for multidimensional data, when the number of dimensions becomes large, relational databases are inecient both in terms of storage and query response time. In this thesis, we explore linearised storage, and indexed and skiplist based retrieval on persistent arrays. The application programs are provided with a logical view of multidimensional array. The techniques have been implemented in a home-grown database management system called MuBase

    Singular value decomposition in parametrised tests of post-Newtonian theory

    Full text link
    Various coefficients of the 3.5 post-Newtonian (PN) phasing formula of non-spinning compact binaries moving in circular orbits is fully characterized by the two component masses. If two of these coefficients are independently measured, the masses can be estimated. Future gravitational wave observations could measure many of the 8 independent PN coefficients calculated to date. These additional measurements can be used to test the PN predictions of the underlying theory of gravity. Since all of these parameters are functions of the two component masses, there is strong correlation between the parameters when treated independently. Using Singular Value Decomposition of the Fisher information matrix, we remove this correlations and obtain a new set of parameters which are linear combinations of the original phasing coefficients. We show that the new set of parameters can be estimated with significantly improved accuracies which has implications for the ongoing efforts to implement parametrised tests of PN theory in the data analysis pipelines.Comment: 17 pages, 6 figures, Accepted for publication in Classical and Quantum Gravity (Matches with the published version

    Generic bounds on dipolar gravitational radiation from inspiralling compact binaries

    Full text link
    Various alternative theories of gravity predict dipolar gravitational radiation in addition to quadrupolar radiation. We show that gravitational wave (GW) observations of inspiralling compact binaries can put interesting constraints on the strengths of the dipole modes of GW polarizations. We put forward a physically motivated gravitational waveform for dipole modes, in the Fourier domain, in terms of two parameters: one which captures the relative amplitude of the dipole mode with respect to the quadrupole mode (α\alpha) and the other a dipole term in the phase (β\beta). We then use this two parameter representation to discuss typical bounds on their values using GW measurements. We obtain the expected bounds on the amplitude parameter α\alpha and the phase parameter β\beta for Advanced LIGO (AdvLIGO) and Einstein Telescope (ET) noise power spectral densities using Fisher information matrix. AdvLIGO and ET may at best bound α\alpha to an accuracy of 102\sim10^{-2} and 103\sim10^{-3} and β\beta to an accuracy of 105\sim10^{-5} and 106\sim10^{-6} respectively.Comment: Matches with the published versio

    A Critique of Drexler Dark Matter

    Full text link
    Drexler dark matter is an alternate approach to dark matter that assumes that highly relativistic protons trapped in the halo of the galaxies could account for the missing mass. We look at various energetics involved in such a scenario such as the energy required to produce such particles and the corresponding lifetimes. Also we look at the energy losses from synchrotron and inverse Compton scattering and their signatures. The Coulomb repulsive instability due to the excess charge around the galaxies is also calculated. The above results lead us to conclude that such a model for DM is unfeasible.Comment: 4 pages, 10 equation

    An accurate formula for the period of a simple pendulum oscillating beyond the small-angle regime

    Full text link
    A simple approximation formula is derived here for the dependence of the period of a simple pendulum on amplitude that only requires a pocket calculator and furnishes an error of less than 0.25% with respect to the exact period. It is shown that this formula describes the increase of the pendulum period with amplitude better than other simple formulas found in literature. A good agreement with experimental data for a low air-resistance pendulum is also verified and it suggests, together with the current availability/precision of timers and detectors, that the proposed formula is useful for extending the pendulum experiment beyond the usual small-angle oscillations.Comment: 15 pages and 4 figures. to appear in American Journal of Physic

    Enhancement of Geometric Phase by Frustration of Decoherence: A Parrondo like Effect

    Get PDF
    Geometric phase plays an important role in evolution of pure or mixed quantum states. However, when a system undergoes decoherence the development of geometric phase may be inhibited. Here, we show that when a quantum system interacts with two competing environments there can be enhancement of geometric phase. This effect is akin to Parrondo like effect on the geometric phase which results from quantum frustration of decoherence. Our result suggests that the mechanism of two competing decoherence can be useful in fault-tolerant holonomic quantum computation.Comment: 5 pages, 3 figures, Published versio
    corecore